GEOTECHNICAL INVESTIGATION

Urban Estates Ltd

Fairbairn Rd Subdivision

Fairbairn Road - Rolleston

April 2019

19830

Shaping the future since 1880

CONTENTS

1.	Introd	uction2						
2.	Geographical Investigation2							
2.1.	Site Location2							
	2.2.	Site Description2						
3.	Geote	chnical Assessment2						
	3.1.	Desktop Study2						
	3.2.	DLS Site Investigation						
	3.3.	Earthquake Risk						
	3.4.	Liquefaction Risk4						
	3.5.	Definition of Good Ground4						
	3.6.	Department of Building and Housing Guidelines5						
4.	Conclu	ısion5						

APPENDICES

APPENDIX A – Location of SPT and Trial Pits across the Site APPENDIX B – SPT and Borelog details of Trial Pits APPENDIX C – Environment Canterbury Well data APPENDIX D – GNS Science: Greendale Fault and its proximity to Fairbairn Road APPENDIX E – Environment Canterbury Regional Council: Liquefaction Assessment Requirements

1. Introduction

Davie Lovell-Smith has been engaged by Urban Estates to undertake a geotechnical investigation of Lot 1 DP 528962 off Fairbairn Road. Urban Estates plan to develop Lot 1 into 22 residential lots. This investigation is required to assess the suitability of the ground conditions across the site for development and to fulfil the recent council requirements on the assessment of liquefaction risk in Canterbury.

A recent site investigation was conducted involving 8 scala penetrometer tests (SPT) and excavation of 8 trial pits across the site by excavator. A borelog was recorded at each test pit to a depth of 2m. See Appendix A for SPT and trial pit locations and Appendix B for the SPT results and bore logs.

Canterbury Regional Council (ECan) borelog data has also been used to estimate the groundwater level at the site. This has been downloaded from the Online ECan GIS site. A location map showing the borehole locations and borelogs is attached in Appendix C.

2. Geographical Investigation

2.1. Site Location

The site is located at Fairbairn Road, Rolleston. The total area of the site is approximately 1.8ha and is currently zoned as Living Z.

2.2. Site Description

Lot 1 DP 528962 is bounded by existing houses to the North, a recently completed subdivision to the west and current development to the East and privates to the South.

The site is generally flat with a slight slope from North to South. Remnants of an old flow path cross through the Western portion of the site. The outer boundaries of the proposed site have a combination of farm style fencing and residential fencing, with an internal fence beside the old flow path. The site also contains some small trees and stumps near the outer East boundary.

The site comprises the following lots: Lot 1 D.P. 528962.

3. Geotechnical Assessment

Geotechnical data has been obtained from the following sources: Environment of Canterbury (ECan) Borelogs and Davie Lovell-Smith site investigation.

3.1. Desktop Study

ECan borelog data has been obtained from the online ECan GIS system and is attached in full detail in Appendix C of this report. The borelog data identified from the nearby sites identified is listed below:

- Borelog M36/5053 (Ellington Mews) 90m West of site Small to medium gravel to a depth of 6.0m, small to medium gravel siltbound to a depth of 7.4m, small to medium gravel to a depth of 8.6m, small to medium gravel cemented sandy silt to a depth 12.4m, small to medium gravel sandy to a depth 14.0m, small to medium gravel with wet yellow silt to a depth of 23.6m, small to medium gravel to depth 25.5m, sandy silt to depth 28m, orange silt to depth of 29m and small to medium gravel rounded to a depth of 36m. Initial water level was 6m below MP, calculated water level 10m B.G.L.
- Borelog M36/4866 (East Maddisons Road) 90m West of site Small medium silt bound gravels to a depth of 4.59m, Small medium gravel with sandy silt to a depth of 26.1m, yellow silt to 28.4m and small medium gravel to depth of 36m B.G.L. Initial water level was 8.5m below MP, calculated water level 10.0m.
- Borelog M36/7195 (East Maddisons Road) 70m South of site Topsoil to a depth of 0.1m, free dry gravels to a depth of 4.0m, claybound gravels to a depth of 9.0m, claybound sandy gravels to a depth of 17.0m, sandy gravels to a depth of 28.0m, clay to a depth of 29.0m and sandy gravels to 42.0m (42B.G.L). Initial water level was 11.2m below MP, calculated water level 9.8m.

The borelog data provides a consistent picture across the area, the site contains varying amounts of topsoil followed by gravel layers with some sand and silt content to 25m, a layer of sandy silt to 29m, and then sandy gravel layers extend to a shallowest depth of 36m. The average depth to the groundwater table identified from the available ECan data was found to be 10.0m (B.G.L).

3.2. DLS Site Investigation

The trial pits excavated show a Topsoil layer varying from 150mm to 300mm depth, then small amounts of silts in some locations. This is underlain by layers of gravels. Test pits were terminated at 2000mm.

These soil horizons were relatively consistent across the entire site; see Appendix A for trial pit locations and Appendix B for full trial pit detail.

Due to the shallow nature of the trial pits excavated, the groundwater level was not found during this site investigation. However correlation between the trial pits and ECan borelog data show a gravel horizon from 2000mm to depths exceeding 20m. This is complementary to the ECan data which shows thin topsoil followed by gravel horizons and a silt layer from 25m.

Scala penetrometer tests had refusal encountered between 300mm and 400mm due to the presence of gravels. The scala penetrometer tests were consistent across the site; see Appendix A for SPT locations and Appendix B for the SPT results.

3.3. Earthquake Risk

A review of the GNS Active Faults Database indicates that the Greendale fault is approximately 5.5km north of the proposed development. Please refer to the attached University of Canterbury trace of the Greendale Fault in Appendix E which depicts the known location of this fault and its proximity to the site.

With reference to the GNS publication "Planning for Development of Land on or Close to Active Faults" a fault avoidance zone of 20 metres either side of the known fault trace or likely fault rupture zone. This is to limit the risk of intense deformation or secondary ruptures in the near vicinity of structures. To our knowledge there is no fault trace on the site but this will be monitored during the earthworks program.

3.4. Liquefaction Risk

For a soil to have liquefaction potential it needs to meet specific moisture and grading criteria. Essentially the soil needs to be a saturated sand or silt. The soil found on this site does not display any of these liquefactious properties. The groundwater is deep. Existing borelogs show this at 10.0m below ground level. From the test pits excavated by DLS the soil profile is generic, showing a sandy gravel matrix which is also confirmed in the existing ECan borelogs.

Therefore we conclude that due to the depth to groundwater and the insitu gravel conditions, this site has a low liquefaction potential.

3.5. Definition of Good Ground

Foundation soils, according to the New Zealand Standard NZS3604:2011 require that the following criteria must be met:

- No buried services under the footings.
- No evidence of land instability.
- No uncontrolled land filling.
- No buried topsoil, soft peat, very soft clay, soft clay or expansive clay.

In addition to this, the soils must meet at least one of the following:

- a) Meet a soil bearing capacity of 300kPa as detailed in the testing requirements in NZS3604.
- b) Inspection of existing structures, council records, local history and geological data shows no evidence of erosion or land instability.
- c) Geotechnical completion report in accordance with NZS4404 identifies good ground.

Under normal circumstances, the option a) would be applied. However, this testing regime does have some prerequisite requirements. For this testing to be applied, the location of the future buildings foundations need to be determined and the tests carried out in those locations. Also the number of tests to be performed is a function of the building size. Clearly, at the time of subdivision, the proposed buildings have not been designed and the testing criteria cannot be met. For these

During the construction of the site, the earthworks will be carried out in accordance with NZS4431:1989. This NZS4431 certification relates to the filling on the site but does not test the insitu soils. The insitu soils may require testing in accordance with NZS3604 at the time of Building Consent Application.

3.6. **Department of Building and Housing Guidelines**

Utilising the "Revised guidance on repairing and rebuilding houses affected by the Canterbury Earthquake Sequence" and the CERA technical Categories Map the Fairbairn Road site is classified as TC1 – future land damage from liquefaction is unlikely. Standard foundations for concrete slabs or timber floors can be used. An engineer should be engaged to determine the appropriate foundation design for the property, based on a site-specific investigation.

4. Conclusion

We believe that the geotechnical data obtained via the ECan borelogs combined with DLS testing and trial pits indicate that the ground conditions over the site are consistent and of acceptable bearing capacity for residential development.

Findings show:

The depth to the groundwater is approximately 10m below ground level; this in association with the insitu gravel horizons provides for a low liquefactious potential. Conditions are consistent with other geotechnical investigations in the Rolleston area and typically, a Technical Category 1 can be safely assumed.

The assessment of each lot being good ground can be assessed once construction and earthworks is complete, as a part of the Building Consent process using NZS3604.

Report prepared by

Ben Fox – Civil Engineer

Report checked by

Andy Hall

CPEng, BE (Hons)

Mall

J:\19830\Eng\Reports\19830 Geotech Report.doc

APPENDIX A

Davie Lovell-Smith SPT and Trial Hole Locations

	AMENDMENT	TS : DATE	DESCE	IPTION		
	NOTES : 1) Service	e easeme	ents to be	created as	required.	
	2) This plr	an has be	en prenc	red for Geo	tech Investigation	
	purpos other c	es only. I ourpose.	vo liability	is accepte	d if the plan is used	l for any
	3) This pla	n has be	en prena	red for the i	use of our client an	d no
	liability	is accep	oted in rel	ation to any	other parties.	ano
	4) Any me	easureme	ents taken	from inform	nation which is not	
	recipie	nt.	i ne elec	nonic copy	are at the tisk of th	le
	5) Levels	are in tei	ms of Me	an Sea Leve	el (Lyttelton vertica	l Datum
	1937) p	prior to C	anterbury	Quakes of :	2010 and 2011.	
	6) Testing	location	s are appi	roximate.		
λ						
\backslash						
$\langle \rangle$						
X						
	LEGEND :					
\sum		S A NIIT A		=D		
		SAINITA	KT SEVVI	=r		
		FENCE			// //	
		KERB				
			0			
/		ę	6 ¹⁰ ×	BOTTOM	OF BANK	
		~	51°.×	TOP OF I	BANK	
		~	b ^A ×	GROUN) LEVEL	
			2.31 ×			
		~	-			
			©	SEWER N	ANHOLE	
			\$	STORMW	ATER MANHOL	E
			н	FIRE HYD	RANT	
			mm	CI II 4 D		
/ / /			шш то י	JUMP		
J []		\geq	⊴" '	TRIAL PIT		
		لم	SPT 1	(CALA 5		ECT
		-4	ب	JCALA P	ENEIROMEIER I	E91
			_			
	r i					
		JAV		OVEL	L-OMIII	1
		PLAN	NING S	URVEYING	ENGINEERING	
	116 V	Vrights Roa	d P	0 Box 679 C	hristchurch 8140. New	Zealand
	Telepl	hone: 03 37	9-0793 We	bsite: www.dls.	co.nz E-mail: office@d	ls.co.nz
	JOB TITLE:			aire P	and	
			airb	airn R	oaa	
	SHEET TITL	E:				
		Ge	otec	h Inve	stigation	
		00			0010	
			LOT	UP 52	070Z	
	DRAMINIC	TATUS				
	DRAWING S	MATUS	For I	nform	ation	
	SCALE :	1:500@	⊉A1)@A3	DA	re: March 20	19
	CAD FILE :	J:\19830	l∖Eng∖Drawing	gs\E19830_Geote	ch investigation_R0.dwg	REVISION :
	DRAWING N	lo :		SHE	ET No:	DO
	E.19	983	0	1	OF 1	KU

APPENDIX B

Davie Lovell-Smith SPT and Borelog Detail – April 2019

		Scala Pen	etrometer L	Job No: 19830						
	Project: S	ubdivision In	vestigation Tes	ting	SPT No: 7	1				
	Date: 29/03/2019									
DAVIE LOVELL-SMITH	Location: Fairbairn Road, Rolleston									
	Logged B	y: Ben Fox								
				Average SPT blows		Blow 5 Blo	s Per 100mm ws/100mm = 300kPa			
Description of Soils	Graphic	Depth (m)	SPT blows	per 300mm	CBR (%)	0.00	10.00 20.00			
Topsoil		0.00 0.10 0.20	3	5.50 12.00	5.75 17.25	0.00				
Finer gravels		0.30 0.40	25	16.50	61.81	0.50				
Coarse gravels		0.50 0.60	-			0.50				
		0.70 0.80								
		0.90	-			1.00				
	lass	1.00								
	,	1.10	-							
		1.20	1							
		1.40	1							
		1.50				1.50				
		1.60	1							
		1.70								
		1.80								
		1.90				2 00				
		2.00				2.00				
		2.10	_							
		2.20	-							
		2.30	-							
		2.40	-			2.50				
		2.50					blows per			
		2.70	1				300mm			
		2.80	1				3604			
		2.90	-			3.00	requirements			

	Sc	rometer L	_og	Job No: 19830				
	Project: Su	Ibdivision In	vestigation -	Testing	SPT No: 2			
	Date: 29/03	3/2019						
DAVIE LOVELL'SMITH	Location: Fairbairn Road, Rolleston							
	Logged By	: Ben Fox						
						В	lows Per 100mm	
				Average		_		
				SPT blows		5 Blo	ws/100mm = 300kPa	
				per		0.00	10.00 20.00 30.00	
Description of Soils	Graphic	Depth (m)	SPT blows	300mm	CBR (%)	0.00		
Topsoil		0.00					\mathbf{N}	
	·····	0.10	3	4.50	5.75			
		0.20	6	9.67	12.50			
Silt	STREET.	0.30	20	19.33	48.14			
Refusal 350mm, Gravels finer		0.40	32	26.00	81.50	0.50		
		0.50						
Gravels coarse	▕▝▋▋▋゙゚	0.60						
		0.70						
		0.80						
		0.90				1.00		
		1.00						
		1.10						
		1.20						
		1.30						
		1.40				1.50		
		1.50						
		1.60						
		1.70						
		1.80						
		1.90				2.00		
		2.00	-					
		2.10						
		2.20						
		2.30						
		2.40				2.50		
		2.50					Average SPI	
		2.60					300mm	
		2.70					3604	
		2.80					requirements	
		2.90				3 00		
		3.00				3.00		

	Sc	ala Penet	rometer l	_og	Job No: 19830				
	Project: Su	bdivision In	vestigation -	Testing	SPT No: 3				
	Date: 29/0	3/2019							
DAVIE LOVELL-SMITH	Location: F	Location: Fairbairn Road, Rolleston							
	Logged By	: Ben Fox	1						
						Ble	ows Per 100mm		
				SPT blows		5.01.	// 00		
				per		5 BIOM	/s/100mm = 300kPa		
Description of Soils	Graphic	Depth (m)	SPT blows	300mm	CBR (%)	0.00	5.00 10.00		
Topsoil - scrub cleared		0.00			- (- /				
		0.10	2	5.00	3.65				
Refusal 150mm,		0.20	8	5.00	17.25				
Fine gravels		0.30		8.00					
		0.40				0.50			
		0.50							
		0.60	-						
		0.70	-						
Coarser gravels		0.80	-						
		0.90				1.00			
		1.00	-						
		1.10							
		1.20	-						
	[1.30	-						
		1.40	-			1.50			
		1.50							
		1.00							
		1.80							
		1.90				2.00			
		2.00				2.00			
		2.10							
		2.20							
		2.30							
		2.40				2.50			
		2.50					Average SPT		
		2.60	-				300mm		
		2.70	-				2604		
		2.80	4				requirements		
		2.90	4			3.00			
		3.00							

	Scala Penetrometer Log				Job No: 19830			
	Project: Su	ubdivision Inv	estigation T	esting	SPT No: 4			
	Date: 29/03/2019							
DAVIE LOVELL-SMITH	Location: Fairbairn Road, Rolleston							
	Logged By	: Ben Fox		1				
						Blows Per 100mm		
				Average				
				SPT blows		5 Blows/100mm = 300kPa		
				per		0.00 5.00 10.00		
Description of Soils	Graphic	Depth (m)	SPT blows	300mm	CBR (%)			
Topsoil, scraped grass		0.00						
		0.10	2	3.00	3.65			
		0.20	4	6.67	7.94			
Refusal.		0.30	14	9.00	32.29	0.50		
Gravels		0.40				0.50		
		0.50						
		0.60						
		0.70	_					
		0.80	_					
	laaa	0.90				1.00		
		1.00						
		1.10						
		1.20						
		1.30						
		1.40				1.50		
		1.50						
		1.60						
	[1.70						
		1.80	4					
		1.90				2.00		
		2.00						
		2.10						
		2.20						
		2.30						
		2.40				2.50		
		2.50				Average SPT blows per		
		2.60				300mm		
		2.70						
		2.80				reauirements		
		2.90				3.00		
		3.00						

	Scala Penetrometer Log				Job No: 19830			
	Project: Su	ubdivision Inv	estigation T	esting	SPT No: 5			
	Date: 29/03/2019							
DAVIE LOVELL-SMITH	Location: Fairbairn Road, Rolleston							
	Logged By	: Ben Fox						
						Blows Per 100mm		
				Average				
				SPT blows		5 Blows/100mm = 300kPa		
				per		0.00 10.00 20.00 30.00		
Description of Soils	Graphic	Depth (m)	SPT blows	300mm	CBR (%)			
Topsoil		0.00						
		0.10	3	4.00	5.75			
		0.20	5	4.00	10.19			
Sandy silt		0.30	4	8.33	7.94			
Finer gravels		0.40	16	15.33	37.50	0.50		
Refusal		0.50	26	21.00	64.59			
		0.60	_					
Coarser gravels		0.70	_					
		0.80	_					
		0.90				1.00		
		1.00	_					
		1.10						
		1.20						
		1.30						
		1.40				1.50		
		1.50						
	inner	1.60						
		1.70						
		1.80						
		1.90	1			2.00		
		2.00						
		2.10	1					
		2.20	1					
		2.30						
		2.40				2.50		
		2.50	1			Average SPT		
		2.60				300mm		
		2.70				3604		
		2.80				requirements		
		2.90				3.00		
		3.00						

	Scala Penetrometer Log J				Job No: 19830				
	Project: Su	ubdivision Inv	estigation T	esting	SPT No: 6				
	Date: 29/03/2019								
DAVIE LOVELL-SMITH	Location: I	Fairbairn Roa	ad, Rolleston						
	Logged By	/: Ben Fox							
							Blows Per 100mm		
				Average			4		
				SPT blows		5 BI	ows/100mm = 300kPa		
			607 I I	per	655 (a))	0.00	5.00 10.00 15.00 20.00		
	Graphic	Depth (m)	SPT blows	300mm	CBR (%)				
lopsoil		0.00	_						
		0.10	5	5.50	10.19				
		0.20	- 6	7.00	12.50				
Gravels		0.30	10	12.00	22.15	0.50			
Refusal	[0.40	20	15.00	48.14	0.50			
		0.50	_						
		0.60	_						
		0.70	_						
		0.80							
		0.90				1.00			
		1.00							
		1.10							
		1.20							
		1.30	_						
		1.40	_			1.50			
	laaa	1.50	_						
		1.60	_						
		1.70							
		1.80							
		1.90				2.00			
		2.00	_						
		2.10							
		2.20							
		2.30	_						
		2.40	4			2.50			
		2.50	4				blows per		
		2.60	4				300mm		
		2.70	4				3604		
		2.80					requirements		
		2.90	4			3.00			
		3.00	1		1 L				

	Scala Penetrometer Log				Job No: 19830				
	Project: Su	ubdivision Inv	estigation T	esting	SPT No: 7	SPT No: 7			
2	Date: 29/03/2019								
DAVIE LOVELL-SMITH	Location: F	airbairn Roa	ad, Rolleston	1					
	Logged By	: Ben Fox							
						B	lows Per 100mm		
				Average					
				SPT blows		5 Blov	ws/100mm = 300kPa		
				per		0.00	5.00 10.00 15.00		
Description of Soils	Graphic	Depth (m)	SPT blows	300mm	CBR (%)	0.00			
Topsoil		0.00							
		0.10	3	7.00	5.75				
Fine gravels		0.20	11	9.33	24.65				
Refusal 250mm		0.30	14	12.50	32.29				
		0.40				0.50			
Coarse gravels		0.50							
		0.60							
		0.70							
Fine Gravels, pebble sized		0.80							
		0.90				1.00			
		1.00							
		1.10							
Coarse Gravels	LAMA	1.20							
		1.30							
		1.40				1.50			
	.	1.50							
		1.60							
		1.70							
		1.80]						
		1.90				2.00			
		2.00							
		2.10							
		2.20							
		2.30							
		2.40				2 50			
		2.50]			2.50	Average SPT		
		2.60]				300mm		
		2.70					2604		
		2.80					requirements		
		2.90]			2 00			
		3.00				5.00			

	Scala Penetrometer Log				Job No: 19830			
	Project: S	ubdivision Inv	estigation T	esting	SPT No: 8			
	Date: 29/03/2019							
DAVIE LOVELL-SMITH	Location:	Fairbairn Roa	ad, Rolleston					
	Logged By	y: Ben Fox	1	1	ſ			
				A		Blows Per 100mm		
				Average				
				SPT DIOWS		5 Blows/100mm = 300kPa		
Description of Soils	Granhic	Denth (m)	SPT blows	300mm	CBB (%)	0.00 5.00 10.00 15.00 20.00		
Tonsoil scrub scraped	Graphic		SFT DIOWS	30011111				
		0.00	1	5.00	1.68			
		0.20	9	12.00	19.68			
Refusal. Finer gravels		0.30	26	17.50	64.59			
		0.40				0.50		
Coarse gravels		0.50						
-		0.60						
		0.70						
		0.80						
		0.90				1.00		
		1.00						
		1.10						
		1.20						
		1.30						
		1.40				1.50		
		1.50	_					
		1.60						
	_	1.70	-					
		1.80	-					
		1.90	-			2.00		
		2.00	-					
		2.10	-					
		2.20	-					
		2.30	-					
		2.50	1			2.50 Average SPT		
		2.60	1			blows per		
		2.70	1			Boomm		
		2.80	1			3604		
		2.90	1					
		3.00	1		1 L	3.00		

APPENDIX C

Canterbury Regional Council (ECan): Well Borehole information

Grid Reference (NZTM): 1550108 mE, 5170791 mN Location Accuracy: 50 - 300m Ground Level Altitude: 43.6 m +MSD Accuracy: < 2.5 m Driller: McMillan Drilling Ltd Drill Method: Dug then Driven Borelog Depth: 20.1 m Drill Date: 01-Jul-1963

	Water			File File File File File File File File	ormation
Scale(m)	Level	Depth(m)		Full Dnilers Description	Code
Scale(m)	Level	Depth(m)	No Log No Log No og No Log No Log No No Log No Log No og No Log No Log No og No Log No Log No og No Log No Log No No Log No Log No	Full Drillers Description Not logged	Code RI
		8.50m _	g No Log No Log N No Log No Log No g No Log No Log No No Log No Log No No Log No Log No No Log No Log No OOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOO	Free gravel	RI
10			000000 0000000000000000000000000000000	Very tight claybound gravel	RI
20		17.70m _	000000 000000 000000 000000 000000 00000	Free gravel with a lot of claywash	RI

Grid Reference (NZTM): 1549838 mE, 5170451 mN Location Accuracy: 50 - 300m Ground Level Altitude: 41.9 m +MSD Accuracy: < 2.5 m Driller: McMillan Drilling Ltd Drill Method: Rotary/Percussion Borelog Depth: 30.0 m Drill Date: 06-Jul-1990

Grid Reference (NZTM): 1549608 mE, 5170691 mN Location Accuracy: 50 - 300m Ground Level Altitude: 44.1 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 36.0 m Drill Date: 01-Oct-1994

	Water				Formation
Scale(m)	Level	Depth(m)		Full Drillers Description	Code
			0==0==0==	Small medium silt bound gravels	RI
Ц					
П			F= 0 == 0 == 0		
Ц					
			000		
Ц			F= 0 == 0 == 0		
Ц					
Π		4.59m	F= 0 == 0 == 0		
5 🗌		-	\overline{D}	Small medium gravel sandy silt	RI
			<u> </u>		
			00.0.		
			.0.0.0		
			0.0.0.		
10					
Π			0.00.0		
П			0		
Н			00		
Н			$p \cdot q \cdot q \cdot q$		
			<u> </u>		
П					
15			<u></u>		
·~ 🖬					
			<u> </u>		
			L.O. <u>O</u> <u>O</u>		
		17.50m			
			7.2.2.	Small medium gravel sandy, first water	RI
				,	
		40.00	1:0:00		
		19.20m			
20			0==0==0==	Small medium gravel, wet sit	RI
~~ H		20.60m			
		20.000		More open smell medium gravel	RI
Н			00.0.	condy loss sit	N .
				sandy less sit	
Н			1.0.0.0		
Н			00.0.		
Н		24.20m _		Oncell and there are under a state of the	
25			0.0.0	Small medium gravel sandy open	RI
~~ 🗎			Fight for the second se	easy driving	
		26.10m	[0,0,0,0,0,0]		
		20.1000		Vellow silt	PP
				reliow sit	DR
			8222223		
		28.40m			
		-	00.:0::	Small medium gravel sandy	LI-1
30			1:0::0::0:		
~~ H			his of ord		
			K		
Н			10:0:0:0:		
Н			P. O. O. O.		
			0.0000		
Н					
			1:0::0::0		
Н		т			
25					
30			·····		
		36.00m			
		30.00m	₩ 1*A73**C1**C		I

Grid Reference (NZTM): 1549608 mE, 5170731 mN Location Accuracy: 50 - 300m Ground Level Altitude: 44.4 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 36.1 m Drill Date: 01-Aug-1996

	Water				Formation
Scale(m)	Level	Depth(m)		Full Drillers Description	Code
5		6.00		Small to medium gravel,clean & open	RI
		7.40m	000	Small to medium gravel,siltbound & tight	RI
		0.60m		Small to medium gravel, clean	RI
10		12.40m		Small to medium gravel,cemented sandy silt,very tight	RI
H		12.4011		Small to medium gravel,sandy	RI
15		14.00m _	0=0=0	Small to medium gravel,wet Yellow silt	RI
20		23.60m _		Small to medium gravel,tight sandy silt	RI
25		25.50m _	.000	Sandy silt	BR
		28.00m		Orange silt	BR
30		29.00m _		Small to medium gravel,very rounded & smooth	LI-1
		36.00m _	0000000000	_	

Grid Reference (NZTM): 1549708 mE, 5170621 mN Location Accuracy: 50 - 300m Ground Level Altitude: 45.3 m +MSD Accuracy: < 0.5 m Driller: Smiths Welldrilling Drill Method: Rotary Rig Borelog Depth: 42.0 m Drill Date: 10-Feb-2005

APPENDIX D

GNS Science: Greendale Fault and its proximity to Fairbairn Road Subdivision

APPENDIX E

Environment Canterbury Regional Council: Liquefaction Assessment Requirements

